
Reading Spatial Data
in R

HES 505 Fall 2023: Session 4

Matt Williamson

1

Objectives
1. Revisit the components of spatial data
2. Describe some of the key considerations for thinking

about spatial data
3. Introduce the two primary R packages for spatial

workflows
4. Learn to read and explore spatial objects in R

2

Describing Absolute Locations
Coordinates: 2 or more measurements that specify
location relative to a reference system

Cartesian coordinate system
origin (O) = the point at which both
measurement systems intersect
Adaptable to multiple dimensions (e.g. z
for altitude)

Cartesian Coordinate System
3

Locations on a Globe
The earth is not flat…

Latitude and Longitude
4

Locations on a Globe
The earth is not flat…
Global Reference Systems (GRS)
Graticule: the grid formed by the intersection of
longitude and latitude
The graticule is based on an ellipsoid model of earth’s
surface and contained in the datum

5

Global Reference Systems
The datum describes which ellipsoid to use and

the precise relations between locations on
earth’s surface and Cartesian coordinates

Geodetic datums (e.g., WGS84): distance from earth’s
center of gravity
Local data (e.g., NAD83): better models for local variation
in earth’s surface

6

Describing location: extent
How much of the world does the data cover?
For rasters, these are the corners of the lattice
For vectors, we call this the bounding box

7

Describing location: resolution

Resolution: the
accuracy that the
location and shape
of a map’s features
can be depicted
Minimum
Mapping Unit: The
minimum size and
dimensions that can
be reliably
represented at a
given map scale.
Map scale vs. scale
of analysis 8

The earth is not flat…

10

Projections
But maps, screens, and publications
are…
Projections describe how the data should
be translated to a flat surface
Rely on ‘developable surfaces’
Described by the Coordinate Reference
System (CRS)

Projection necessarily induces some form of
distortion (tearing, compression, or shearing)

Developable Surfaces

11

Coordinate Reference Systems
Some projections minimize distortion of angle, area, or distance
Others attempt to avoid extreme distortion of any kind
Includes: Datum, ellipsoid, units, and other information (e.g., False
Easting, Central Meridian) to further map the projection to the GCS
Not all projections have/require all of the parameters

12

Choosing Projections
Equal-area for thematic maps
Conformal for presentations
Mercator or equidistant for
navigation and distance

13

Geometries, support, and spatial
messiness

15

Geometries

Vectors store
aggregate the
locations of a feature
into a geometry
Most vector
operations require
simple, valid
geometries

Image Source: Colin Williams (NEON)

16

Valid Geometries
A linestring is simple if it does not intersect
Valid polygons
Are closed (i.e., the last vertex equals the first)
Have holes (inner rings) that inside the the exterior boundary
Have holes that touch the exterior at no more than one vertex (they
don’t extend across a line) - For multipolygons, adjacent polygons
touch only at points
Do not repeat their own path

17

18

Empty Geometries
Empty geometries arise when an operation produces
NULL outcomes (like looking for the intersection
between two non-intersecting polygons)
sf allows empty geometries to make sure that
information about the data type is retained
Similar to a data.frame with no rows or a list with
NULL values
Most vector operations require simple, valid geometries

19

Support
Support is the area to which an attribute applies.

20

Spatial Messiness
Quantitative geography requires that our data are
aligned
Achieving alignment is part of reproducible workflows
Making principled decisions about projections,
resolution, extent, etc

21

Mapping Location in R

23

Data Types and R Packages
Data Types

Vector Data
Point features
Line features
Area features (polygons)

Raster Data
Spatially continuous field
Based on pixels (not points)

24

Reading in Spatial Data:
spreadsheets

Most basic form of spatial data
Need x (longitude) and y (latitude) as columns
Need to know your CRS
read_*** necessary to bring in the data

library(tidyverse)1
library(sf)2

3
file.to.read <- read_csv(file = "path/to/your/file", 4
 col_names = TRUE, col_types = NULL, 5
 na =na = c("", "NA"))6

7
file.as.sf <- st_as_sf(file.to.read, 8
 coords = c("longitude", "latitude"), 9
 crs=4326)10

25

Reading in Spatial Data: shapefiles

26

Reading in Spatial Data: shapefiles
library(sf)1
shapefile.inR <- read_sf(dsn = "path/to/file.shp",2
 layer=NULL, geometry_colu3

27

Reading in Spatial Data: rasters
rast will read rasters using the terra package
Also used to create rasters from scratch
Returns SpatRaster object
library(sf)1
raster.inR <- rast(x = "path/to/file.shp", 2
 lyrs=NULL)3

28

Introducing the Data
Good idea to get to know your data before manipulating
it
str, summary, nrow, ncol are good places to start
st_crs (for sf class objects) and crs (for SpatRaster
objects)
We’ll practice a few of these now…

29

Saving your data
write_sf for sf objects; writeRaster for
SpatRasters

library(sf)1
library(terra)2

3
write_sf(object = object.to.save, dsn = "path/to/save/object", append = FAL4
writeRaster(x=object, filename = "path/to/save")5

30

