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Today’s Plan
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Objectives
By the end of today, you should be able to:

Define spatial analysis
Describe the steps in planning a spatial analysis
Understand the structure of relational databases
Use attributes and topology to subset data
Generate new features using geographic data
Join data based on attributes and location
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What is spatial
analysis?
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What is spatial analysis?
“The process of examining the locations, attributes, and
relationships of features in spatial data through overlay
and other analytical techniques in order to address a
question or gain useful knowledge. Spatial analysis
extracts or creates new information from spatial data”.
— ESRI Dictionary
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What is spatial analysis?
The process of turning maps into
information
Any- or everything we do with
GIS
The use of computational and
statistical algorithms to
understand the relations
between things that co-occur in
space.

John Snow’s cholera outbreak
map
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Common goals for spatial analysis
Describe and
visualize locations or
events
Quantify patterns
Characterize
‘suitability’
Determine
(statistical) relations

courtesy of NatureServe
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https://www.natureserve.org/products/species-distribution-modeling


Common pitfalls of spatial analysis
Locational Fallacy: Error due to the spatial
characterization chosen for elements of study
Atomic Fallacy: Applying conclusions from individuals
to entire spatial units
Ecological Fallacy: Applying conclusions from
aggregated information to individuals

Spatial analysis is an inherently complex endeavor and one that is advancing
rapidly. So-called “best practices” for addressing many of these issues are still
being developed and debated. This doesn’t mean you shouldn’t do spatial
analysis, but you should keep these things in mind as you design, implement,
and interpret your analyses
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Workflows for spatial
analysis
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Workflows for spatial analysis



Acquisition (not really a focus,
but see )
Geoprocessing
Analysis
Visualization

Resources

courtesy of University of Illinois
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http://127.0.0.1:4232/content/resource/
https://guides.library.illinois.edu/c.php?g=348425&p=5443868


Geoprocessing
Manipulation of data for subsequent use

Alignment
Data cleaning and transformation
Combination of multiple datasets
Selection and subsetting
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Databases and
Attributes
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Databases and Attributes
Attributes: Information that further describes a
spatial feature
Attributes → predictors for analysis
Last week focus on thematic relations between
datasets

Shared ‘keys’ help define linkages between
objects

Sometimes we are interested in attributes that
describe location (overlaps, contains, distance)
Sometimes we want to join based on location
rather than thematic connections

Must have the same CRS

courtesy of Giscommons
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https://giscommons.org/data-tables-and-data-preprocessing/


Databases and attributes
Previous focus has been largely on location
Geographic data often also includes non-
spatial data
Attributes: Non-spatial information that
further describes a spatial feature
Typically stored in tables where each row
represents a spatial feature

Wide vs. long formatcourtesy of Giscommons
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https://giscommons.org/data-tables-and-data-preprocessing/


Common attribute operations
sf designed to work with tidyverse
Allows use of dplyr data manipulation verbs
(e.g. filter, select, slice)
Can use scales package for units
Also allows %>% to chain together multiple steps
geometries are “sticky”
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Subsetting by Field
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Subsetting by Features
Features refer to the individual observations in the
dataset
Selecting features
head(world)[1:3, 1:3] %>% 1
  st_drop_geometry()2

# A tibble: 3 × 3
  iso_a2 name_long      continent
* <chr>  <chr>          <chr>    
1 FJ     Fiji           Oceania  
2 TZ     Tanzania       Africa   
3 EH     Western Sahara Africa   

world %>%1
  filter(continent == "Asia") %>% 2
    dplyr::select(name_long, conti3
  st_drop_geometry() %>% 4
  head(.)5

# A tibble: 6 × 2
  name_long   continent
  <chr>       <chr>    
1 Kazakhstan  Asia     
2 Uzbekistan  Asia     
3 Indonesia   Asia     
4 Timor-Leste Asia     
5 Israel      Asia     
6 Lebanon     Asia     
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Spatial Subsetting
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Topological Subsetting
Topological relations describe the spatial relationships between objects
We can use the overlap (or not) of vector data to subset the data based on topology
Need valid geometries
Easiest way is to use [ notation, but also most restrictive

canterbury = nz  %>% filter(Name == "Cante1
canterbury_height = nz_height[canterbury, 2
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Topological Subsetting
Lots of verbs in sf for doing this (e.g.,
st_intersects, st_contains,
st_touches)
see ?geos_binary_pred for a full
list
Creates an implicit attribute (the
records in x that are “in” y)

Using sparse=TRUE
co = filter(nz, grepl("Canter|Otag1
st_intersects(nz_height, co, 2
              sparse = TRUE)[1:3] 3

[[1]]
integer(0)

[[2]]
[1] 2

[[3]]
[1] 2

lengths(st_intersects(nz_height, 1
                      co, sparse =2

[1] FALSE  TRUE  TRUE
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Topological Subsetting
The sparse option controls how the results are returned
We can then find out if one or more elements satisfies the
criteria

Using sparse=FALSE
st_intersects(nz_height, co, sparse = FALSE)[1:3,] 1

      [,1]  [,2]
[1,] FALSE FALSE
[2,] FALSE  TRUE
[3,] FALSE  TRUE

apply(st_intersects(nz_height, co, sparse = FALSE), 1,any)[1:3]1
[1] FALSE  TRUE  TRUE
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Topological Subsetting
canterbury_height3 = nz_height %>%1
  filter(st_intersects(x = ., y = canterbu2
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New Attributes from
Existing Fields
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Revisiting the tidyverse
Creating new fields
world %>%1
  filter(continent == "Asia") %>% 2
    dplyr::select(name_long, continent, pop, gdpPercap ,area_km2) %>%3
  mutate(., dens = pop/area_km2,4
         totGDP = gdpPercap * pop) %>%5
  st_drop_geometry() %>% 6
  head(.)7

# A tibble: 6 × 7
  name_long   continent       pop gdpPercap area_km2   dens  totGDP
  <chr>       <chr>         <dbl>     <dbl>    <dbl>  <dbl>   <dbl>
1 Kazakhstan  Asia       17288285    23587. 2729811.   6.33 4.08e11
2 Uzbekistan  Asia       30757700     5371.  461410.  66.7  1.65e11
3 Indonesia   Asia      255131116    10003. 1819251. 140.   2.55e12
4 Timor-Leste Asia        1212814     6263.   14715.  82.4  7.60e 9
5 Israel      Asia        8215700    31702.   22991. 357.   2.60e11
6 Lebanon     Asia        5603279    13831.   10099. 555.   7.75e10
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Revisiting the tidyverse
Creating new fields
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Revisiting the tidyverse



Aggregating data world %>%1
  st_drop_geometry(.) %>% 2
  group_by(continent) %>%3
  summarize(pop = sum(pop, na.rm =4

# A tibble: 8 × 2
  continent                      pop
  <chr>                        <dbl>
1 Africa                  1154946633
2 Antarctica                       0
3 Asia                    4311408059
4 Europe                   669036256
5 North America            565028684
6 Oceania                   37757833
7 Seven seas (open ocean)          0
8 South America            412060811
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New Attributes from
Topology
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Attributes based on geometry and
location (measures)

Attributes like area and length can be useful for a
number of analyses

Estimates of ‘effort’ in sampling designs
Offsets for modeling rates (e.g., Poisson regression)

Need to assign the result of the function to a column in
data frame (e.g., $, mutate, and summarize)
Often useful to test before assigning
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Estimating area
sf bases area (and length) calculations on the
map units of the CRS
the units library allows conversion into a
variety of units

nz.sf <- nz %>% 1
  mutate(area = st_area(nz2
head(nz.sf$area, 3)3

Units: [m^2]
[1] 12890576439  4911565037 
24588819863

nz.sf$areakm <- units::set1
head(nz.sf$areakm, 3)2

Units: [km^2]
[1] 12890.576  4911.565 
24588.820
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Estimating Density in Polygons
Creating new features based on the frequency
of occurrence
Clarifying graphics
Underlies quadrat sampling for point patterns
Two steps: count and area
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Estimating Density in Polygons
nz.df <- nz %>% 1
mutate(counts = lengths(st_intersects(., r2
       area = st_area(nz),3
       density = counts/area)4
head(st_drop_geometry(nz.df[,7:10]))5

  counts              area              
density
1     18 12890576439 [m^2] 1.396369e-09 
[1/m^2]
2     10  4911565037 [m^2] 2.036011e-09 
[1/m^2]
3     24 24588819863 [m^2] 9.760534e-10 
[1/m^2]
4     22 12271015945 [m^2] 1.792843e-09 
[1/m^2]
5      6  8364554416 [m^2] 7.173126e-10 
[1/m^2]
6     21 14242517871 [m^2] 1.474458e-09 
[1/m^2]
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Estimating Density in Polygons
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Estimating Distance
As a covariate
For use in covariance matrices
As a means of assigning connections in networks
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Estimating Single Point Distance
st_distance
returns distances
between all features
in x and all features
in y
One-to-One
relationship requires
choosing a single
point for y
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Estimating Single Point Distance
Subsetting y into a single feature
canterbury = nz %>% filter(Name == "Canterbury")1
canterbury_height = nz_height[canterbury, ]2
co = filter(nz, grepl("Canter|Otag", Name))3
st_distance(nz_height[1:3, ], co)4

Units: [m]
          [,1]     [,2]
[1,] 123537.16 15497.72
[2,]  94282.77     0.00
[3,]  93018.56     0.00
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Estimating Single Point Distance
Using nearest neighbor distances
ua <- urban_areas(cb = FALSE, progress_bar1
  filter(., UATYP10 == "U") %>% 2
  filter(., str_detect(NAME10, "ID")) %>% 3
  st_transform(., crs=2163)4

5
#get index of nearest ID city6
nearest <-  st_nearest_feature(ua)7
#estimate distance8
(dist = st_distance(ua, ua[nearest,], by_e9

Units: [m]
[1]  61386.444  61386.444   1646.182   
1646.182 136908.183 136908.183
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Joining (a)spatial data
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Joining (a)spatial data
Requires a “key”
field
Multiple outcomes
possible
Think about your
final data form
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Left Join
Useful for adding other attributes not in your spatial
data
Returns all of the records in x attributed with y
Pay attention to the number of rows!
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Left Join
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Left Join
head(coffee_data)1

# A tibble: 6 × 3
  name_long                
coffee_production_2016 
coffee_production_2017
  <chr>                               
<int>                  <int>
1 Angola                              
NA                     NA
2 Bolivia                             
3                      4
3 Brazil                              
3277                   2786
4 Burundi                             
37                     38
5 Cameroon                            
8 6

world_coffee = left_join(world, co1
nrow(world_coffee)2

[1] 177
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Left Join
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Inner Join
Useful for subsetting to “complete” records
Returns all of the records in x with matching y
Pay attention to the number of rows!
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Inner Join
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Inner Join
world_coffee_inner = inner_join(wo1
nrow(world_coffee_inner)2

[1] 45

setdiff(coffee_data$name_long, wor1
[1] "Congo, Dem. Rep. of" "Others"    
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Inner Join
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Spatial Joins
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Spatial Joins
sf package provides st_join for vectors
Allows joins based on the predicates (st_intersects,
st_touches, st_within_distance, etc.)
Default is a left join

57



Spatial Joins
set.seed(2018)1
(bb = st_bbox(world)) # the world'2

      xmin       ymin       xmax      
ymax 
-180.00000  -89.90000  179.99999   
83.64513 

#>   xmin   ymin   xmax   ymax 1
#> -180.0  -89.9  180.0   83.62
random_df = data.frame(3
  x = runif(n = 10, min = bb[1], m4
  y = runif(n = 10, min = bb[2], m5
)6
random_points = random_df |> 7
  st_as_sf(coords = c("x", "y")) |8
  st_set_crs("EPSG:4326") # set ge9

10
random_joined = st_join(random_poi11
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Spatial Joins
Sometimes we may want to be less restrictive
Just because objects don’t touch doesn’t mean they don’t
relate to each other
Can use predicates in st_join
Remember that default is left_join (so the number of
records can grow if multiple matches)
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Spatial Joins
any(st_touches(cycle_hire, cycle_hire_osm, sparse 1

[1] FALSE
z = st_join(cycle_hire, cycle_hire_osm, st_is_with1
nrow(cycle_hire)2

[1] 742
nrow(z)1

[1] 762
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Extending Joins
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Extending Joins
Sometimes we are interested in analyzing locations that contain the overlap between two vectors

How much of home range a occurs on soil type b
How much of each Census tract is contained with a service provision area?

st_intersection, st_union, and st_difference return new geometries that we can use
as records in our spatial database

intersect_pct <- st_intersection(n1
   mutate(intersect_area = st_area2
   dplyr::select(NAME, intersect_a3
   st_drop_geometry()4

5
nc <- mutate(nc, county_area = st_6

7
# Merge by county name8
nc <- merge(nc, intersect_pct, by 9

10
# Calculate coverage11
nc <- nc %>% 12
   mutate(coverage = as.numeric(in13
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Extending Joins
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