
Combining Tabular and Spatial Data

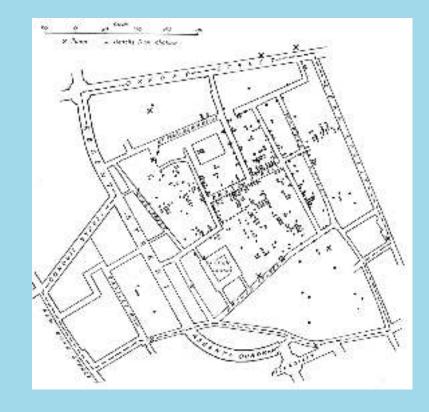
HES 505 Fall 2023: Session 15

Matt Williamson

Objectives

By the end of today, you should be able to:

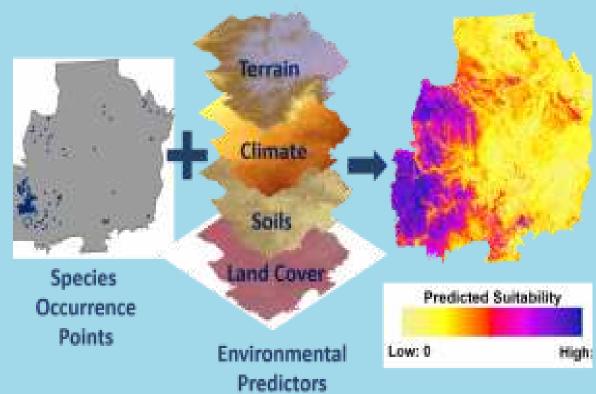
- Define *spatial analysis*
- Describe the steps in planning a spatial analysis
- Understand the structure of relational databases
- Use attributes and topology to subset data
- Generate new features using geographic data
- Join data based on attributes and location


What is spatial analysis?

What is spatial analysis?

"The process of examining the locations, attributes, and relationships of features in spatial data through overlay and other analytical techniques in order to address a question or gain useful knowledge. Spatial analysis extracts or creates new information from spatial data". — ESRI Dictionary

What is spatial analysis?


- The process of turning maps into information
- Any- or everything we do with GIS
- The use of computational and statistical algorithms to understand the relations between things that co-occur in space.

John Snow's cholera outbreak map

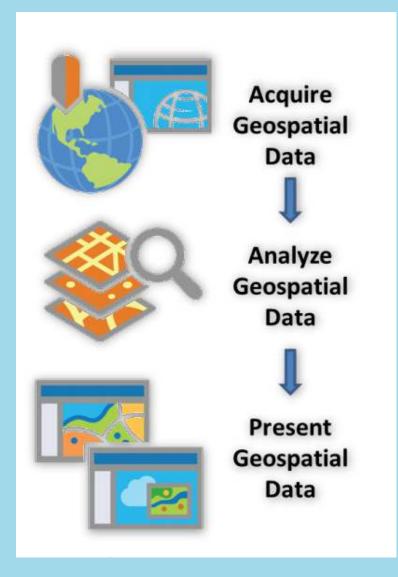
Common goals for spatial analysis

3uilding a Model

- Describe and visualize locations or events
- Quantify patterns
- Characterize 'suitability'
- Determine (statistical) relations

courtesy of NatureServe

Common pitfalls of spatial analysis


- Locational Fallacy: Error due to the spatial characterization chosen for elements of study
- Atomic Fallacy: Applying conclusions from individuals to entire spatial units
- Ecological Fallacy: Applying conclusions from aggregated information to individuals

Spatial analysis is an inherently complex endeavor and one that is advancing rapidly. So-called "best practices" for addressing many of these issues are still being developed and debated. This doesn't mean you shouldn't do spatial analysis, but you should keep these things in mind as you design, implement, and interpret your analyses

Workflows for spatial analysis

Workflows for spatial analysis

- Acquisition (not really a focus, but see Resources)
- Geoprocessing
- Analysis
- Visualization

courtesy of University of Illinois

Geoprocessing

Manipulation of data for subsequent use

- Alignment
- Data cleaning and transformation
- Combination of multiple datasets
- Selection and subsetting

Databases and Attributes

Databases and Attributes

			C	Key ID	Field	
	*		+	0	6	1
0	AREA	PERMITER	6PH	LANDUSE	101,525	PERRIS.
2	6474154.35278		00105400230000	(BIGAJOS)	6796363-500000	
3	7070794,10172	10044.4783	20100e000110000	HEAMAG	6969600 000000	
A	12990367 20904		20100330000000	IS AIAG	13229173 000000	
£ [294004275233		20102400130000	HPAJAG	2746280.000000	
£	102725-00952		20100300198080	WEACEA	507308.000000	
1	10000-00001		20401200145000	MOACOA.		40000
£	2007/0.20084	NOT MADE	Record	Adectaba.	249105 00000	2400000
-	127115300 300007	1000144014	20100000100000	174340	13007709-300000	
9	0530649.10776		20100200163000	IFAJAG	00/19/157 (000000	
	2534034.40015	7726.0000	2010020000000	HEAING	2000472 #00000	
2	2453663350513		20100200/90000	HEADAG	20100008-000000	
	4005050.54001		20 02200 00000	WEACEA	4400468.800000	
4	305170.00143	FIEIG anta	20102100453000	WSACOA	4029/30 000000	
6	8703821 85378	13027-50100	20100100150000	WDACDA	5057962.400000	
10	1400016-00010	2001.6774	2010010010010000	WCACDA	1404108 000000	M0000
0	228970.91558	2406.00000	20102120 102000	WCACSA	217364 400000	M0000
0	1368014 20168	4997,26427	20100100170000	WEACEA	1153468 800000	M0000
2	1615120.08961	30115403	20100100110000	WCACEA	1554236 000000	PM0000
50	33466.36368	TEL 44679	20100120140000	WCACDA	25142.000000	M0070
10	576458 D0586		20100510010000	A160EA	630602-400000	M0000
12	3450710.31760		2010100060000	1NGAC04	4194092-400000	
23	210706.26201	3455 20872	20100530010000	WGACEA	236295 200000	E0000
	798557 53179	152v8.88526	20101000080000	WHACEA	20037-800000	180000
8	250170 57538	3179.71960	20100530050000	MAAAB	255234 000000	
1 20 20 10	37129.21791	106 1603	20100100130000	WCACD4	30008 000000	040070
5	158741.86422	1096.72911	33102630063000	A3200A	181172.000000	120000

courtesy of Giscommons

- Attributes: Information that further describes a spatial feature
- Attributes \rightarrow predictors for analysis
- Last week focus on thematic relations between datasets
 - Shared 'keys' help define linkages between objects
- Sometimes we are interested in attributes that describe location (overlaps, contains, distance)
- Sometimes we want to join based on location rather than thematic connections
 - Must have the same CRS

Databases and attributes

			C	Key ID	Field	
-	*		+	0	6	F.
1	AREA	PERMITER	APH .	LANDUSE	101,525	PETRRIC.
3	6474154.35276		00000000000000000	184AJOS	6796363-500000	
3	7070794,10172	10044.4783	20100e000150000	HEALAG	6969600 000000	
A	129903367 20904	40302 301 6	20100300000000	IS AJAG	13229173 000000	jin40000
£	294004275233	7000 51423	20 02400130000	HPAJAG	2744280.000000	040000
£	102725-00952	0212-30057	2010/0000 190000	WEACEA	587308.000000	
1	10000 00231		20401000140000	MCACOA.		140000
£	200710-20084	1216-1423	Record	Adectaba	2/0/06 00000	(m800000
-	12711330 30505	1000044014	p0100000000000000000000000000000000000	176340	13007700-000000	
0	0530649.10776	(10)0.31722	20+05200+62000	IFAMO	00/19/157 (\$00000	h40000
1	2534634.48015	7726.0008	201002000000	HEAJAG	2000472 400000	940000
2	2450663 50513	70025401	20100200/90000	HEALAG	2010000 000000	M0000
	4005050.54001	Field	20 00200 00000	WEACEA	4400463.000000	M0000
4	305170.00140	FIGIO STATE	20100150453000	WSACOA	402930 000000	540000
6	8700821 85378	13027 50100	20100100150000	WCACOA	6087982.400000	040000
10	1403016-00610	2001 6774	2010010010010000	WC40bA	1404108.000800	(M0000
7	228970.91550	2406.00000	2010212010010000	WCACSA	217364 400000	M0000
10	1368014 20168	4907 35427	20100100170000	WEACEA	1153468 800000	M0000
2	1815128.08801	3011540	201001001100110000	WCACEA	1554256 000000	940000 ·
50	33406.36369	FEI 44679	20100100140000	WC400A	25142 000000	040070
10	575458 D6566	1274.04752	20100510010000	A160EA	630602-400000	M0000
12	\$450710.31750	28027 3 (45)	2010100060000	WGAC6A	4194092-400000	eM0000
3	210/06/26201	3466 2017	20100530010000	WGACOA	236095 200000	00000
14	790557 53179	152W8 185528	20101000080000	WHACEA	20037-800000	180000
8	250170 57538	3179, 17960	20100530050000	MOAAB	255224 000000	20000
8	37129.21791	106 1603	20100100130000	WCACDA.	30008 000000	040070
5	15874138422	LDM.72911	20100630062000	A3200A	1811/2.000000	120000

courtesy of Giscommons

- Previous focus has been largely on *location*
- Geographic data often also includes nonspatial data
- Attributes: Non-spatial information that further describes a spatial feature
- Typically stored in tables where each row represents a spatial feature
 - Wide vs. long format

Common attribute operations

- **sf** designed to work with **tidyverse**
- Allows use of dplyr data manipulation verbs (e.g. filter, select, slice)
- Can use **scales** package for units
- Also allows %>% to chain together multiple steps
- geometries are "sticky"

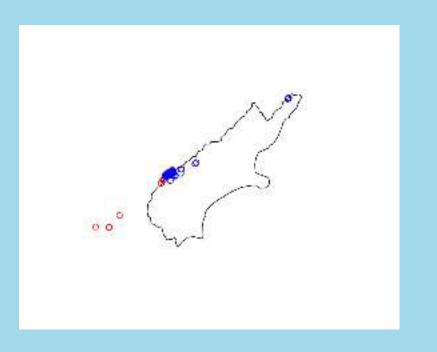
Subsetting by Field

Subsetting by Features

- Features refer to the individual observations in the dataset
- Selecting features

1 head(world)[1:3, 1:3] %>%
2 st drop geometry()

#	A tibbl	Le: 3 × 3	
	iso_a2	name_long	continent
*	<chr></chr>	<chr></chr>	<chr></chr>
1	FJ	Fiji	Oceania
2	TZ	Tanzania	Africa
3	EH	Western Sahara	Africa

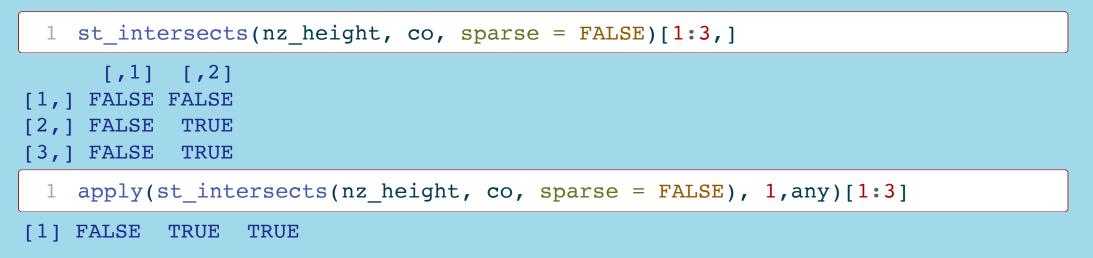

```
1 world %>%
2 filter(continent == "Asia") %>%
3 dplyr::select(name_long, conti
4 st_drop_geometry() %>%
```

5 head(.)

- # A tibble: 6 × 2
 name_long continent
 <chr> <chr>
- 1 Kazakhstan Asia
- 1 Kazakiistan Asia
- 2 Uzbekistan Asia
- 3 Indonesia Asia
- 4 Timor-Leste Asia
- 5 Israel Asia
- 6 Lebanon Asia

Spatial Subsetting

- Topological relations describe the spatial relationships between objects
- We can use the overlap (or not) of vector data to subset the data based on topology
- Need valid geometries
- Easiest way is to use [notation, but also most restrictive
 - 1 canterbury = nz %>% filter(Name == "Cante
 - 2 canterbury_height = nz_height[canterbury,


- Lots of verbs in sf for doing this (e.g., st_intersects, st_contains, st_touches)
- see ?geos_binary_pred for a full list
- Creates an **implicit** attribute (the *records* in **x** that are "in" **y**)

Using sparse=TRUE

<pre>1 co = filter(nz, grepl("Canter Otag 2 st_intersects(nz_height, co, 3 sparse = TRUE)[1:3]</pre>
<pre>[[1]] integer(0)</pre>
[[2]] [1] 2
[[3]] [1] 2
<pre>1 lengths(st_intersects(nz_height, 2 co, sparse =</pre>
[1] FALSE TRUE TRUE

- The **sparse** option controls how the results are returned
- We can then find out if one or more elements satisfies the criteria

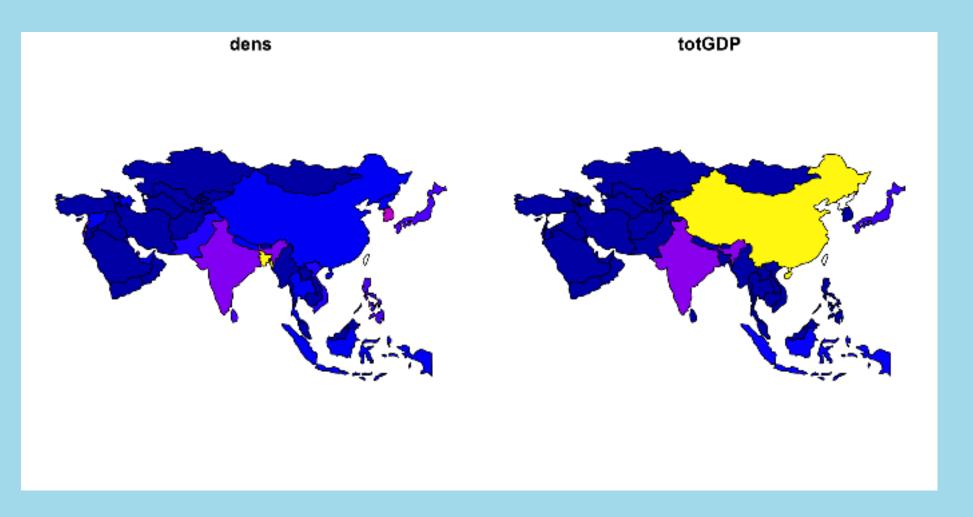
Using sparse=FALSE

- 1 canterbury_height3 = nz_height %>%
- 2 filter(st_intersects(x = ., y = canterbu

New Attributes from Existing Fields

Revisiting the tidyverse

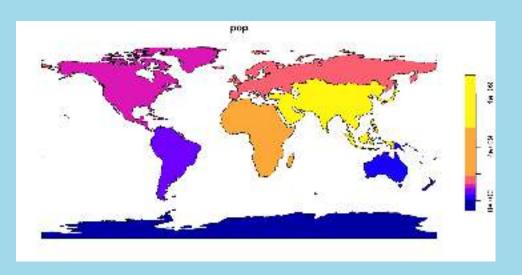
• Creating new fields


```
1 world %>%
2 filter(continent == "Asia") %>%
3 dplyr::select(name_long, continent, pop, gdpPercap ,area_km2) %>%
4 mutate(., dens = pop/area_km2,
5 totGDP = gdpPercap * pop) %>%
6 st_drop_geometry() %>%
7 head(.)
```

```
# A tibble: 6 \times 7
```

	name_long	continent	рор	gdpPercap	area_km2	dens	totGDP
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Kazakhstan	Asia	17288285	23587.	2729811.	6.33	4.08e11
2	Uzbekistan	Asia	30757700	5371.	461410.	66.7	1.65e11
3	Indonesia	Asia	255131116	10003.	1819251.	140.	2.55e12
4	Timor-Leste	Asia	1212814	6263.	14715.	82.4	7.60e 9
5	Israel	Asia	8215700	31702.	22991.	357.	2.60e11
6	Lebanon	Asia	5603279	13831.	10099.	555.	7.75e10

Revisiting the tidyverse


• Creating new fields

Revisiting the tidyverse

Aggregating data

	<pre>1 world %>% 2 st_drop_geometry(.) 3 group_by(continent) 4 summarize(pop = sum</pre>	8>8
#	A tibble: 8 × 2	
	continent	pop
	<chr></chr>	<dbl></dbl>
1	Africa	1154946633
2	Antarctica	0
3	Asia	4311408059
4	Europe	669036256
5	North America	565028684
6	Oceania	37757833
7	Seven seas (open ocean)	0
8	South America	412060811

New Attributes from Topology

Attributes based on geometry and location (measures)

- Attributes like area and length can be useful for a number of analyses
 - Estimates of 'effort' in sampling designs
 - Offsets for modeling rates (e.g., Poisson regression)
- Need to assign the result of the function to a column in data frame (e.g., **\$**, **mutate**, and **summarize**)
- Often useful to test before assigning

Estimating area

- **sf** bases area (and length) calculations on the map units of the CRS
- the **units** library allows conversion into a variety of units

```
1 nz.sf <- nz %>%
```

```
2 mutate(area = st_area(nz
```

```
3 head(nz.sf$area, 3)
```

```
Units: [m<sup>2</sup>]
[1] 12890576439 4911565037
24588819863
```

```
1 nz.sf$areakm <- units::set</pre>
```

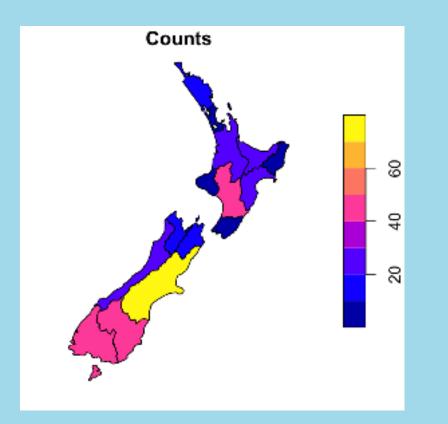
```
2 head(nz.sf$areakm, 3)
```

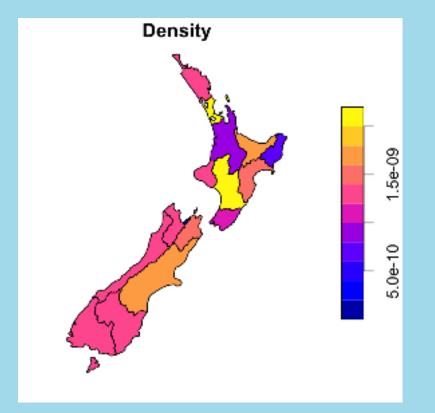
```
Units: [km<sup>2</sup>]
[1] 12890.576 4911.565
24588.820
```

Estimating Density in Polygons

- Creating new features based on the frequency of occurrence
- Clarifying graphics
- Underlies quadrat sampling for point patterns
- Two steps: count and area

Estimating Density in Polygons

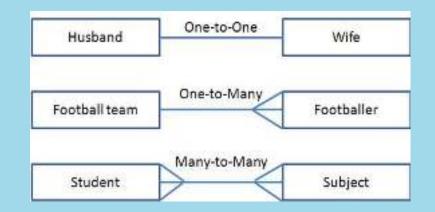



1	nz.df <- nz %>%	
2	<pre>mutate(counts = lengths(st_intersects(.,)</pre>	
3	<pre>area = st_area(nz),</pre>	
4	<pre>density = counts/area)</pre>	

5 head(st_drop_geometry(nz.df[,7:10]))

counts		area	
density			
1 18	12890576439	[m^2]	1.396369e-09
[1/m^2]			
2 10	4911565037	[m^2]	2.036011e-09
[1/m^2]			
3 24	24588819863	[m^2]	9.760534e-10
[1/m^2]			
4 22	12271015945	[m^2]	1.792843e-09
[1/m^2]			
5 6	8364554416	[m^2]	7.173126e-10
[1/m^2]			
6 21	14242517871	[m^2]	1.474458e-09
[1/m^2]			

Estimating Density in Polygons



Estimating Distance

- As a covariate
- For use in covariance matrices
- As a means of assigning connections in networks

Estimating Single Point Distance

- st_distance
 returns distances
 between all features
 in x and all features
 in y
- One-to-One relationship requires choosing a single point for y

Estimating Single Point Distance

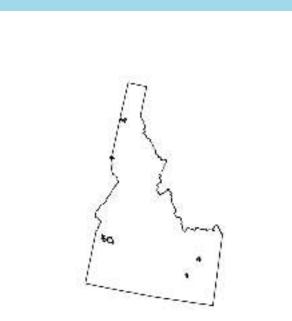
• Subsetting y into a single feature

```
1 canterbury = nz %>% filter(Name == "Canterbury")
```

- 2 canterbury_height = nz_height[canterbury,]
- 3 co = filter(nz, grepl("Canter|Otag", Name))
- 4 st_distance(nz_height[1:3,], co)

Units: [m]

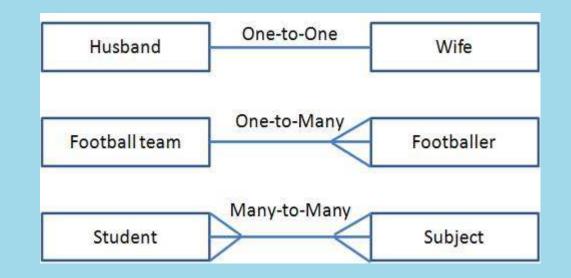
	[,1]	[,2]
[1,]	123537.16	15497.72
[2,]	94282.77	0.00
[3,]	93018.56	0.00



Estimating Single Point Distance

• Using nearest neighbor distances

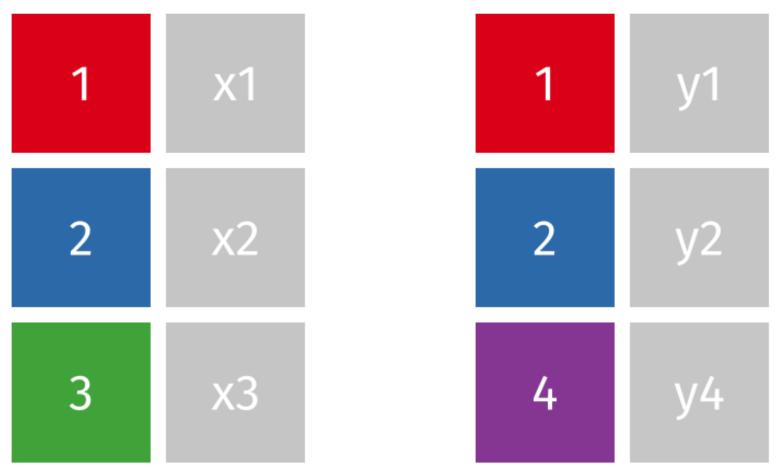
```
ua <- urban areas(cb = FALSE, progress bar
 1
      filter(., UATYP10 == "U") %>%
 2
     filter(., str detect(NAME10, "ID")) %>%
 3
      st transform(., crs=2163)
 4
 5
    #get index of nearest ID city
 6
    nearest <- st nearest feature(ua)</pre>
 7
    #estimate distance
 8
   (dist = st_distance(ua, ua[nearest,], by_e
 9
Units: [m]
```


[1] 61386.444 61386.444 1646.182 1646.182 136908.183 136908.183

Joining (a) spatial data

Joining (a) spatial data

- Requires a "key" field
- Multiple outcomes possible
- Think about your final data form

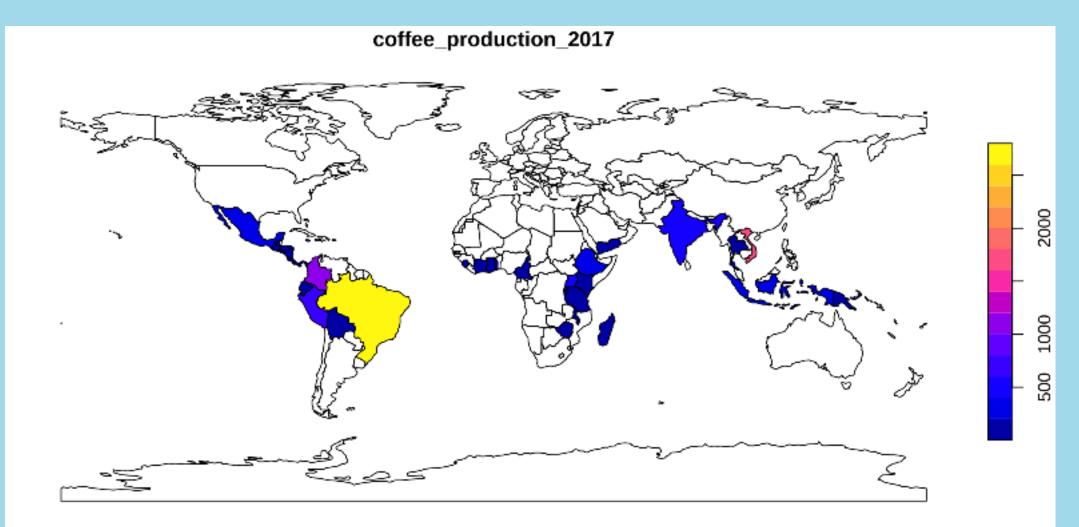


Left Join

- Useful for adding other attributes not in your spatial data
- Returns all of the records in **x** attributed with **y**
- Pay attention to the number of rows!

left_join(x, y)

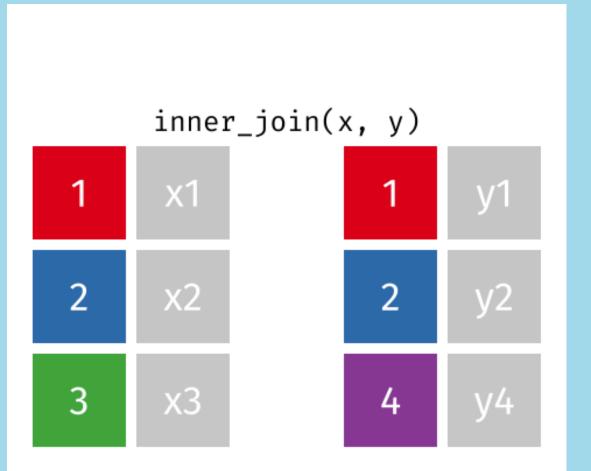
Left Join


1 head(coffee_data)

```
# A tibble: 6 \times 3
  name long
coffee_production_2016
coffee production 2017
  <chr>
<int>
                         <int>
1 Angola
NA
                         NA
2 Bolivia
3
                         4
3 Brazil
3277
                         2786
4 Burundi
37
                         38
5 Cameroon
                          ~
~
```

- 1 world_coffee = left_join(world, co
- 2 nrow(world_coffee)

[1] 177



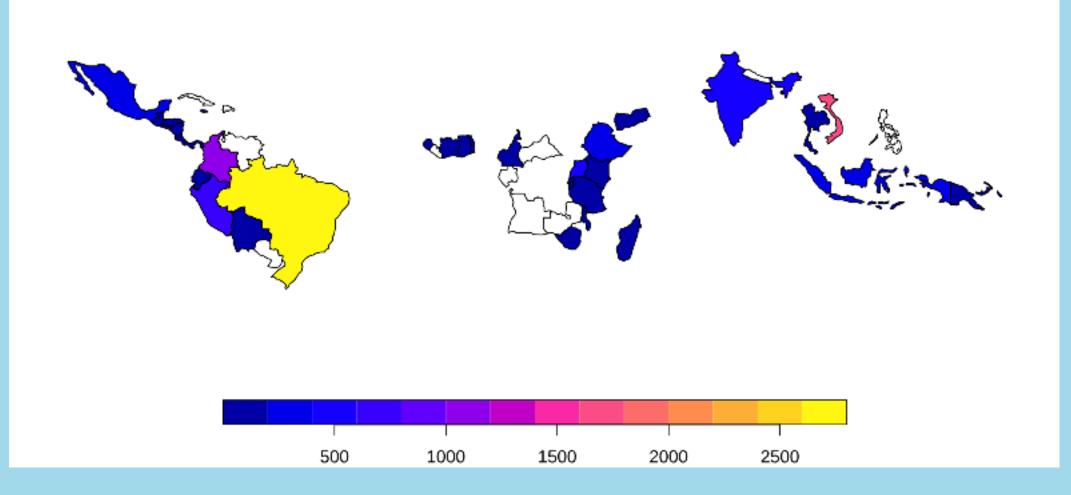
Inner Join

- Useful for subsetting to "complete" records
- Returns all of the records in **x** with matching **y**
- Pay attention to the number of rows!

Inner Join

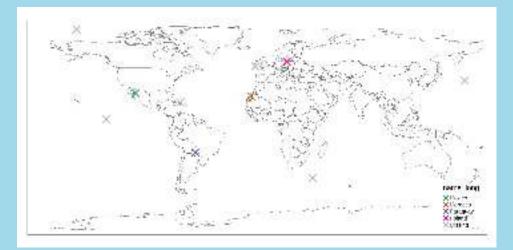
Inner Join

- 1 world_coffee_inner = inner_join(wc
- 2 nrow(world_coffee_inner)


[1] 45

1 setdiff(coffee_data\$name_long, wor

[1] "Congo, Dem. Rep. of" "Others"



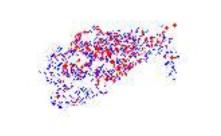
coffee_production_2017

- sf package provides st_join for vectors
- Allows joins based on the predicates (st_intersects, st_touches, st_within_distance, etc.)
- Default is a left join

1 set.seed(2018) (bb = st bbox(world)) # the world' 2 xmin ymin xmax ymax -180.00000 - 89.90000 179.9999983.64513 #> xmin ymin xmax 1 ymax *#>* -180.0 -89.9 180.0 83.6 2 random df = data.frame(3 x = runif(n = 10, min = bb[1], m4 y = runif(n = 10, min = bb[2], m5 6 random points = random df |> 7 st as sf(coords = c("x", "y")) 8 st set crs("EPSG:4326") # set ge 9 10 random joined = st join(random poi 11

- Sometimes we may want to be less restrictive
- Just because objects don't touch doesn't mean they don't relate to each other
- Can use predicates in st_join
- Remember that default is **left_join** (so the number of records can grow if multiple matches)

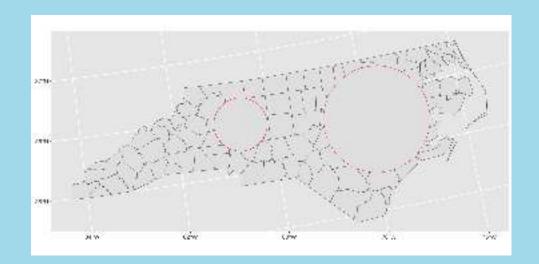
1 any(st_touches(cycle_hire, cycle_hire_osm, sparse


[1] FALSE

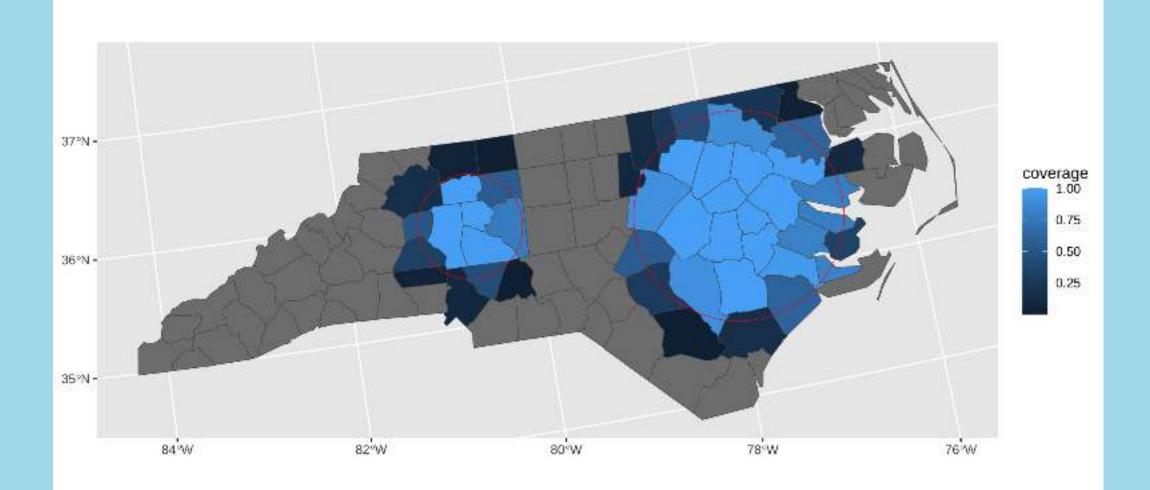
- 1 z = st_join(cycle_hire, cycle_hire_osm, st_is_with
- 2 nrow(cycle_hire)

[1] 742

1 nrow(z)


[1] 762

Extending Joins


Extending Joins

- Sometimes we are interested in analyzing locations that contain the overlap between two vectors
 - How much of home range *a* occurs on soil type *b*
 - How much of each Census tract is contained with a service provision area?
- **st_intersection**, **st_union**, and **st_difference** return new geometries that we can use as records in our spatial database

1	<pre>intersect_pct <- st_intersection(r</pre>
2	<pre>mutate(intersect_area = st_area</pre>
3	<pre>dplyr::select(NAME, intersect_a</pre>
4	<pre>st_drop_geometry()</pre>
5	
6	<pre>nc <- mutate(nc, county_area = st_</pre>
7	
8	# Merge by county name
9	<pre>nc <- merge(nc, intersect_pct, by</pre>
10	
11	<pre># Calculate coverage</pre>
12	nc <- nc %>%
13	<pre>mutate(coverage = as.numeric(ir</pre>

Extending Joins

