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Objectives
By the end of today you should be able to:

Distinguish deterministic and stochastic processes
Define autocorrelation and describe its estimation
Articulate the benefits and drawbacks of autocorrelation
Leverage point patterns and autocorrelation to
interpolate missing data

3



Description vs. process?
Vizualization and the detection
of patterns
The challenge of geographic data
Implications for analysis

Inequality in the United States:
Quintiles of Gini Index by
County: 2006–2010. The greater
the Gini index, the more
unequal a county’s income
distribution is.
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Patterns as realizations of spatial
processes

A spatial process is a description of how a spatial
pattern might be generated
Generative models
An observed pattern as a possible realization of an
hypothesized process
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Deterministic vs. stochastic
processes

Deterministic processes: always
produces the same outcome

Results in a spatially continuous field

z = 2x + 3y

x <- rast(nrows = 10, ncols=10, xmin = 0, xmax=10,1
values(x) <- 12
z <- x3
values(z) <- 2 * crds(x)[,1] + 3*crds(x)[,2]4
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Deterministic vs. stochastic
processes

Stochastic processes: variation
makes each realization
difficult to predict

The process is random, not the
result (!!)
Measurement error makes
deterministic processes
appear stochastic

z = 2x + 3y + d

x <- rast(nrows = 10, ncols=10, xmin = 0, 1
values(x) <- 12
fun <- function(z){3
a <- z4
d <- runif(ncell(z), -50,50)5
values(a) <- 2 * crds(x)[,1] + 3*crds(x)[,6
return(a)7
}8

9
b <- replicate(n=6, fun(z=x), simplify=FAL10
d <- do.call(c, b)11
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Deterministic vs. stochastic
processes
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Expected values and hypothesis
testing

Considering each outcome as the realization of
a process allows us to generate expected values
The simplest spatial process is Completely
Spatial Random (CSR) process
First Order effects: any event has an equal
probability of occurring in a location
Second Order effects: the location of one event
is independent of the other events

From Manuel Gimond
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Generating expectations for CSR
We can use quadrat counts to estimate the
expected number of events in a given area
The probability of each possible count is given
by:

Given total coverage of quadrats, then 
and
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Tobler’s Law
‘everything is usually related to all else but those which
are near to each other are more related when compared
to those that are further away’.
Waldo Tobler
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Spatial autocorrelation

From Manuel Gimond
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(One) Measure of autocorrelation
Moran’s I

14



Moran’s I: An example
Use spdep package
Estimate neighbors
Generate weighted average

set.seed(2354)1
# Load the shapefile2
s <- readRDS(url("https://github.com/mgimond/Data/raw/gh-pages3

4
# Define the neighbors (use queen case)5
nb <- poly2nb(s, queen=TRUE)6

7
# Compute the neighboring average homicide rates8
lw <- nb2listw(nb, style="W", zero.policy=TRUE)9
#estimate Moran's I10
moran.test(s$HR80,lw, alternative="greater")11

    Moran I test under randomisation

data:  s$HR80  
weights: lw    

Moran I statistic standard deviate = 1.8891, p-value = 0.02944
alternative hypothesis: greater
sample estimates:
Moran I statistic       Expectation          Variance 
      0.136277593      -0.015151515       0.006425761 
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Moran’s I: An example
M1 <- moran.mc(s$HR80, lw, nsim=9999, alte1

2
3
4

# Display the resulting statistics5
M16

    Monte-Carlo simulation of Moran I

data:  s$HR80 
weights: lw  
number of simulations + 1: 10000 

statistic = 0.13628, observed rank = 9575, p-
value = 0.0425
alternative hypothesis: greater
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The challenge of areal data
Spatial autocorrelation threatens second order
randomness
Areal data means an infinite number of potential
distances
Neighbor matrices, , allow different characterizationsW
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Interpolation
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Interpolation
Goal: estimate the value of  at new points in 
Most useful for continuous values
Nearest-neighbor, Inverse Distance Weighting, Kriging

z x

i
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Nearest neighbor
find  such that  is minimized
The estimate of  is 

i | − x|x

i

z zi
data(meuse)1
r <- rast(system.file("ex/meuse.tif", package="terra"))2
sfmeuse <- st_as_sf(meuse, coords = c("x", "y"), crs=crs(r))3
nodes <- st_make_grid(sfmeuse,4
                      cellsize = 25,5
                      what = "centers")6

7
dist <- distance(vect(nodes), vect(sfmeuse))8
nearest <- apply(dist, 1, function(x) which(x == min(x)))9
zinc_nn <- sfmeuse$zinc[nearest]10
preds <- st_as_sf(nodes)11
preds$zn <- zinc_nn12
preds <- as(preds, "Spatial")13
gridded(preds) <- TRUE14
preds.rast <- rast(preds)15
r.resamp <- resample(r, preds.rast)16
preds.rast <- mask(preds.rast, r.resamp)17
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Inverse-Distance Weighting
Weight closer observations more heavily

where

and  (  is inverse;  is inverse square)

(x) =ẑ 
∑ i=1 wizi
∑ i=1 wi

= |x −wi xi|
−α

α > 0 α = 1 α = 2
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Inverse-Distance Weighting
terra::interpolate provides flexible interpolation
methods
Use the gstat package to develop the formula
mgsf05 <- gstat(id = "zinc", formula = zinc~1, data=sfmeuse,  nmax=7, set=l1
mgsf2 <- gstat(id = "zinc", formula = zinc~1, data=sfmeuse,  nmax=7, set=li2
interpolate_gstat <- function(model, x, crs, ...) {3
    v <- st_as_sf(x, coords=c("x", "y"), crs=crs)4
    p <- predict(model, v, ...)5
    as.data.frame(p)[,1:2]6
}7
zsf05 <- interpolate(r, mgsf05, debug.level=0, fun=interpolate_gstat, crs=c8
zsf2 <- interpolate(r, mgsf2, debug.level=0, fun=interpolate_gstat, crs=crs9
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Inverse-Distance Weighting
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Inverse-Distance Weighting
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Kriging
Previous methods predict  as a (weighted) function of distance
Treat the observations as perfect (no error)
If we imagine that  is the outcome of some spatial process such that:

then any observed value of  is some function of the process ( ) and
some error ( )

Kriging exploits autocorrelation in  to identify the trend and
interpolate accordingly

z

z

z(x) = μ(x) + ϵ(x)

z μ(x)
ϵ(x)

ϵ(x)
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Autocorrelation
Correlation the tendency for two variables to be related
Autocorrelation the tendency for observations that are
closer (in space or time) to be correlated
Positive autocorrelation neighboring observations have
 with the same sign

Negative autocorrelation neighboring observations have
 with a different sign (rare in geography)

ϵ

ϵ
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Ordinary Kriging
Assumes that the deterministic part of the process ( )
is an unknown constant ( )

* Specified in call to variogram and gstat as y~1 (or
some other constant)

μ(x)
μ

z(x) = μ + ϵ(x)

v <- variogram(log(zinc)~1, ~x+y, data=meuse)1
mv <- fit.variogram(v, vgm(1, "Sph", 300, 1))2
gOK <- gstat(NULL, "log.zinc", log(zinc)~1, meuse, locations=~x+y, model=mv3
OK <- interpolate(r, gOK, debug.level=0)4
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Ordinary Kriging
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Universal Kriging
Assumes that the deterministic part of the process ( )
is now a function of the location 
Could be the location or some other attribute
Now y is a function of some aspect of x

μ(x)
x

vu <- variogram(log(zinc)~elev, ~x+y, data=meuse)1
mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))2
gUK <- gstat(NULL, "log.zinc", log(zinc)~elev, meuse, locations=~x+y, model3
names(r) <- "elev"4
UK <- interpolate(r, gUK, debug.level=0)5
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Universal Kriging
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Universal Kriging
vu <- variogram(log(zinc)~x + x^2 + y + y^2, ~x+y, data=meuse)1
mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))2
gUK <- gstat(NULL, "log.zinc", log(zinc)~x + x^2 + y + y^2, meuse, location3
names(r) <- "elev"4
UK <- interpolate(r, gUK, debug.level=0)5

32



Universal Kriging
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Co-Kriging
relies on autocorrelation in  for  AND cross
correlation with other variables ( )
Extending the ordinary kriging model gives:

* Note that there is autocorrelation within both  and 
(because of the ) and cross-correlation (because of the
location, )

(x)ϵ1 z1
z2...j

(x) = + (x)z1 μ1 ϵ1
(x) = + (x)z2 μ2 ϵ2

z1 z2
ϵ

x
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Co-Kriging
Process is just a linked series of gstat calls
gCoK <- gstat(NULL, 'log.zinc', log(zinc)~1, meuse, locations=~x+y)1
gCoK <- gstat(gCoK, 'elev', elev~1, meuse, locations=~x+y)2
gCoK <- gstat(gCoK, 'cadmium', cadmium~1, meuse, locations=~x+y)3
coV <- variogram(gCoK)4
coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))5

6
coK <- interpolate(r, coV.fit, debug.level=0)7
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Co-Kriging
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Co-Kriging
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A Note about Semivariograms
nugget - the proportion of semivariance that occurs at
small distances
sill - the maximum semivariance between pairs of
observations
range - the distance at which the sill occurs
experimental vs. fitted variograms

38



A Note about Semivariograms

39



Fitted Semivariograms
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