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Objectives

By the end of today you should be able to:

o Distinguish deterministic and stochastic processes
e Define autocorrelation and describe its estimation
e Articulate the benefits and drawbacks of autocorrelation

» Leverage point patterns and autocorrelation to
interpolate missing data




Description vs. process?

e Vizualization and the detection
of patterns

 The challenge of geographic data

e Implications for analysis

Inequality in the United States:
Quintiles of Gini Index by
County: 2006-2010. The greater
the Gini index, the more
unequal a county’s income
distribution is.



Patterns as realizations of spatial
processes

o A spatial process is a description of how a spatial
pattern might be generated

e Generative models

e An observed pattern as a possible realization of an
hypothesized process



Deterministic vs. stochastic
processes

e Deterministic processes: always

produces the same outcome —1|

Z = 2Xx + 3y

e Results in a spatially continuous field

X <- rast(nrows = 10, ncols=10, xmin = 0, xmax=10,
values(x) <- 1

z <- X

values(z) <- 2 * crds(x)[,1] + 3*crds(x)[,2]




Deterministic vs. stochastic

processes

o Stochastic processes: variation
makes each realization
difficult to predict

z=2x+3y+d

e The process is random, not the
result (!!)

e Measurement error makes
deterministic processes
appear stochastic

X <- rast(nrows = 10, ncols=10, xmin = 0,
values(x) <- 1

fun <- function(z){

a <- z

d <- runif(ncell(z), -50,50)

values(a) <- 2 * crds(x)[,1] + 3*crds(X)][,
return(a)

}

b <- replicate(n=6, fun(z=x), simplify=FAI
d <- do.call(c, b)







Expected values and hypothesis
testing

« Considering each outcome as the realization of points have equal
Pm&:?.::lhmlrl-\}: oF dppearing

a process allows us to generate expected values ﬂ“”‘f“m
« The simplest spatial process is Completely
Spatial Random (CSR) process

o First Order effects: any event has an equal
probability of occurring in a location

e Second Order effects: the location of one event °

is independent of the other events

poirts don't inFluence
each other's location

From Manuel Gimond



Generating expectations for CSR

» We can use quadrat counts to estimate the

e S expected number of events in a given area
i . e o The probability of each possible count is given
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Tobler’s Law

‘everything is usually related to all else but those which
are near to each other are more related when compared
to those that are further away’.

Waldo Tobler
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Spatial autocorrelation
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(One) Measure of autocorrelation

e Moran’s I
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Moran’s I: An example

e Use spdep package
o Estimate neighbors

» Generate weighted average

set.seed(2354)
# Load the shapefile

# Define the neighbors (use queen case)
nb <- poly2nb(s, gqueen=TRUE)

# Compute the neighboring average homicide rates
lw <- nb2listw(nb, style="W", zero.policy=TRUE)
#estimate Moran's I

moran.test(s$HR80,1w, alternative="greater")

s <- readRDS(url("https://github.com/mgimond/Data/raw/gh-pages

Moran I test under randomisation

data: sS$HR80
weights: 1w

Moran I statistic standard deviate = 1.8891, p-value = 0.02944
alternative hypothesis: greater

sample estimates:
Moran I statistic Expectation Variance
0.136277593 -0.015151515 0.006425761

ol

I.'.-! i

[HRIE N
LS F
TAT =LA
LT IER BT
[ERER TR
122

BN TERE -]

15



Ml <- moran.mc(s$HR80, 1lw, nsim=9999,

Density plot of permutation outcomes

# Display the resulting statistics
M1

-0 a0 .1 0.z a3 .4

=3HRE0
Mante-Caria simulation of Moran |




The challenge of areal data

e Spatial autocorrelation threatens second order
randomness

e Areal data means an infinite number of potential
distances

» Neighbor matrices, W, allow different characterizations
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Interpolation




Interpolation

» Goal: estimate the value of z at new points in X;
e Most useful for continuous values

 Nearest-neighbor, Inverse Distance Weighting, Kriging
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data(meuse)
r <- rast(system.file("ex/meuse.tif", package="terra"))
sfmeuse <- st as sf(meuse, coords = c("x", "y"), crs=crs(r))
nodes <- st make grid(sfmeuse,

cellsize = 25,

what = "centers")
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dist <- distance(vect(nodes), vect(sfmeuse))

nearest <- apply(dist, 1, function(x) which(x == min(x)))
zinc_nn <- sfmeuse$zinc[nearest]

preds <- st as sf(nodes)

preds$zn <- zinc_nn

preds <- as(preds, "Spatial")
gridded(preds) <- TRUE

preds.rast <- rast(preds)

r.resamp <- resample(r, preds.rast)
preds.rast <- mask(preds.rast, r.resamp)
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Inverse-Distance Weighting

» Weight closer observations more heavily

> i=1 Wi4i
)3 i=1 Wi

AX) =

where
| —Q

Wi = |X X

and a > 0 (a = 1 is inverse; a = 2 is inverse square)
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Inverse-Distance Weighting

« terra::interpolate provides flexible interpolation
methods

» Use the gstat package to develop the formula

mgsf05 <- gstat(id = "zinc", formula = zinc~1l, data=sfmeuse, nmax=7, set=l
mgsf2 <- gstat(id = "zinc", formula = zinc~1l, data=sfmeuse, nmax=7, set=1li
interpolate gstat <- function(model, x, crs, ...) {

v <- st as sf(x, coords=c("x", "y"), crs=crs)

p <- predict(model, v, ...)

as.data.frame(p)[,1:2]
}
zsf05 <- interpolate(r, mgsf05, debug.level=0, fun=interpolate gstat, crs=c
zsf2 <- interpolate(r, mgsf2, debug.level=0, fun=interpolate gstat, crs=crs
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Inverse-Distance Weighting
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Kriging
e Previous methods predict z as a (weighted) function of distance

e Treat the observations as perfect (no error)

o If we imagine that z is the outcome of some spatial process such that:

z(X) = u(x) + €(x)

then any observed value of z is some function of the process (p(x)) and
some error (€(X))

» Kriging exploits autocorrelation in €(X) to identify the trend and
interpolate accordingly
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Autocorrelation

 Correlation the tendency for two variables to be related

« Autocorrelation the tendency for observations that are
closer (in space or time) to be correlated

o Positive autocorrelation neighboring observations have
€ with the same sign

» Negative autocorrelation neighboring observations have
€ with a different sign (rare in geography)
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Ordinary Kriging

» Assumes that the deterministic part of the process (u(x))
is an unknown constant ()

z(X) = W+ €(x)

* Specified in call to variogramand gstat as y~1 (or
some other constant)

v <- variogram(log(zinc)-~1l, ~x+y, data=meuse)

mv <- fit.variogram(v, vgm(l, "Sph", 300, 1))

gOK <- gstat(NULL, "log.zinc", log(zinc)-~1, meuse, locations=~x+y, model=mv
OK <- interpolate(r, gOK, debug.level=0)
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Universal Kriging

» Assumes that the deterministic part of the process (u(x))

is now a function of the location X

e Could be the location or some other attribute

e Now Y is a function of some aspect of X

vu <- variogram(log(zinc)-~elev, ~x+y, data=meuse)
mu <- fit.variogram(vu, vgm(l, "Sph", 300, 1))

gUK <- gstat(NULL, "log.zinc", log(zinc)-elev, meuse, locations=~x+y, model

names(r) <- "elev"
UK <- interpolate(r, gUK, debug.level=0)

30



log.zinc.pred log.zinc.var

1 I 1 I
1Fa000 150000 181000 178000 180000 181000




vu <- variogram(log(zinc)~x + x"2 + y + y"2, ~xty, data=meuse)
mu <- fit.variogram(vu, vgm(l, "Sph", 300, 1))

gUK <- gstat(NULL, "log.zinc", log(zinc)~x + x"2 + y + y"2, meuse, location
names(r) <- "elev"
UK <- interpolate(r, gUK, debug.level=0)
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Co-Kriging
e relies on autocorrelation in €1 (x) for z; AND cross

correlation with other variables (z_;)

» Extending the ordinary kriging model gives:

Z1(X) = [ + €1(X)
7 (X) = W + €2(X)
* Note that there is autocorrelation within both z; and z

(because of the €) and cross-correlation (because of the
location, x)
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gCoK <- gstat(NULL, 'log.zinc', log(zinc)-~1l, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'elev', elev~1l, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'cadmium', cadmium~1, meuse, locations=~x+y)

coV <- variogram(gCoK)
coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))

coK <- interpolate(r, coV.fit, debug.level=0)
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A Note about Semivariograms

» nugget - the proportion of semivariance that occurs at
small distances

e sill - the maximum semivariance between pairs of
observations

e range - the distance at which the sill occurs

« experimental vs. fitted variograms
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pure nugget effect

(no evident spatial
auto-correlation)




Fitted Semivariograms






