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Objectives

e Define a point process and their utility for ecological
applications

 Define first and second-order Complete Spatial
Randomness

» Use several common functions to explore point patterns

» Leverage point patterns to interpolate missing data




What is a point pattern?

o Point pattern: A set of events within a study Some notation:
region (i.e., a window) generated by a random

process o S: refers to the entire set

e S; denotes the vector of data
describing point s; in set S

o #(S € A) refers to the number
of points in S within study
area A

e Set: A collection of mathematical events

« Events: The existence of a point object of the
type we are interested in at a particular
location in the study region

o A marked point pattern refers to a point pattern
where the events have additional descriptors



Requirements for a set to be
considered a point pattern



Describing Point Patterns

o Density-based metrics: the # of points within
area, a, in study area A

e Distance-based metrics: based on nearest
neighbor distances or the distance matrix for
all points

e First order effects reflect variation in intensity
due to variation in the “attractiveness’ of

locations
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Analyzing Point Patterns

e Modeling random processes means we are interested in
probability densities of the points (first-order;density)

o Also interested in how the presence of some events
affects the probability of other events (second-
order;distance)

e Finally interested in how the attributes of an event affect
location (marked)

* Need to introduce a few new packages (spatstat and
gstat)



Density based methods

 The overall intensity of a point
pattern is a crude density
estimate
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Analyzing Point
Patterns




Kernel Density Estimates (KDE)
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e Assume each location in S; drawn from unknown distribution
o Distribution has probability density f(x)
o Estimate f(x) by averaging probability “bumps” around each location

« Need different object types for most operations in R (as. ppp)
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Kernel Density Estimates (KDE)

e h is the bandwidth and k is the kernel

e« We can use stats::density to explore

o kernel: defines the shape, size, and weight assigned to observations in the
window

« bandwidth often assigned based on distance from the window center

X <- rpoispp(lambda =50)

Kl <- density(x, bw=2)

K2 <- density(x, bw=10)

K3 <- density(x, bw=2, kernel="disc")
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Choosing bandwidths and kernels

e Small values for h give ‘spiky” densities

o Large values for h smooth much more

» Some kernels have optimal bandwidth detection

« tmap package provides additional functionality
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Second-Order
Analysis




Second-Order Analysis

e KDEs assume independence of points (first order
randomness)

 Second-order methods allow dependence amongst
points (second-order randomness)

 Several functions for assessing second order dependence
(K, L, and G)
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Distance based metrics

e Provide an estimate of the second order effects

o Mean nearest-neighbor distance:

A _ 221 dmin(si)

dmin -

18



1 ANN <- apply(nndist(x, k=1:50),2,FUN=mean)
2 plot(ANN ~ eval(l:50), type="b", main=NULL, las=1)




Ripley’s K Function

e Nearest neighbor methods throw away a lot of information

o If points have independent, fixed marginal densities, then they exhibit complete,
spatial randomness (CSR)

« The K function is an alternative, based on a series of circles with increasing radius
K(d) = XTE®Ny)
e We can test for clustering by comparing to the expectation:

Kesr(d) = nd*

o if k(d) > Kcsr(d) then there is clustering at the scale defined by d
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Ripley’s K Function

» When working with a sample the distribution of K is
unknown

e Estimate with

where:
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Ripley’s K Function



1 kf <- Kest(bramblecanes, correction-"border")
2 plot(kf)
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1 kf.env <- envelope(bramblecanes, correction="border", envelope = FALSE, ver
2 plot(kf.env)
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Other functions

e L function: square root
transformation of K

G function: the cummulative
frequency distribution of the
nearest neighbor distances

« F function: similar to G but
based on randomly located
points
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