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Objectives
Define a point process and their utility for ecological
applications
Define first and second-order Complete Spatial
Randomness
Use several common functions to explore point patterns
Leverage point patterns to interpolate missing data
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What is a point pattern?
Point pattern: A set of events within a study
region (i.e., a window) generated by a random
process
Set: A collection of mathematical events
Events: The existence of a point object of the
type we are interested in at a particular
location in the study region
A marked point pattern refers to a point pattern
where the events have additional descriptors

Some notation:

: refers to the entire set
 denotes the vector of data

describing point  in set 
 refers to the number

of points in  within study
area 
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Requirements for a set to be
considered a point pattern
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Describing Point Patterns
Density-based metrics: the  of points within
area, , in study area 
Distance-based metrics: based on nearest
neighbor distances or the distance matrix for
all points
First order effects reflect variation in intensity
due to variation in the ‘attractiveness’ of
locations
Second order effects reflect variation in intensity
due to the presence of points themselves
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Centrography
Mean center: the point, ,
whose coordinates are the
average of all events in the
pattern
Standard distance: a measure of
the dispersion of points
around the mean center
Standard ellipse: dispersion in
one dimension
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Analyzing Point Patterns
Modeling random processes means we are interested in
probability densities of the points (first-order;density)
Also interested in how the presence of some events
affects the probability of other events (second-
order;distance)
Finally interested in how the attributes of an event affect
location (marked)
Need to introduce a few new packages (spatstat and
gstat)
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Density based methods
The overall intensity of a point
pattern is a crude density
estimate

* Local density = quadrat counts
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Analyzing Point
Patterns
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Kernel Density Estimates (KDE)

Assume each location in  drawn from unknown distribution
Distribution has probability density 
Estimate  by averaging probability “bumps” around each location
Need different object types for most operations in R (as.ppp)
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Kernel Density Estimates (KDE)
 is the bandwidth and  is the kernel

We can use stats::density to explore
kernel: defines the shape, size, and weight assigned to observations in the
window
bandwidth often assigned based on distance from the window center

h k

x <- rpoispp(lambda =50)1
K1 <- density(x, bw=2)2
K2 <- density(x, bw=10)3
K3 <- density(x, bw=2, kernel="disc")4
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Choosing bandwidths and kernels
Small values for  give ‘spiky’ densities
Large values for  smooth much more
Some kernels have optimal bandwidth detection
tmap package provides additional functionality
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Second-Order
Analysis
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Second-Order Analysis
KDEs assume independence of points (first order
randomness)
Second-order methods allow dependence amongst
points (second-order randomness)
Several functions for assessing second order dependence
( , , and )K L G
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Distance based metrics
Provide an estimate of the second order effects
Mean nearest-neighbor distance:
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Nearest-neighbor distance
ANN <- apply(nndist(x, k=1:50),2,FUN=mean)1
plot(ANN ~ eval(1:50), type="b", main=NULL, las=1)2
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Ripley’s  Function
Nearest neighbor methods throw away a lot of information
If points have independent, fixed marginal densities, then they exhibit complete,
spatial randomness (CSR)
The K function is an alternative, based on a series of circles with increasing radius

We can test for clustering by comparing to the expectation:

if  then there is clustering at the scale defined by 

K

K(d) = E( )λ−1 Nd

(d) = πKCSR d2

k(d) > (d)KCSR d
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Ripley’s  Function
When working with a sample the distribution of  is
unknown
Estimate with

where:
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Ripley’s  FunctionK
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Ripley’s  FunctionK
kf <- Kest(bramblecanes, correction-"border")1
plot(kf)2
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Ripley’s  Function
accounting for variation in 

K
d

kf.env <- envelope(bramblecanes, correction="border", envelope = FALSE, ver1
plot(kf.env)2
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Other functions
 function: square root

transformation of 
 function: the cummulative

frequency distribution of the
nearest neighbor distances

 function: similar to  but
based on randomly located
points
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