Statistical Modelling II

HES 505 Fall 2023: Session 23

Matt Williamson

Objectives

By the end of today you should be able to:

- Articulate the differences between statisitical learning classifiers and logistic regression
- Describe several classification trees and their relationship to Random Forests
- Describe MaxEnt models for presence-only data

Revisiting Classification

Favorability in General

 $F(s) = f(w_1X_1(s), w_2X_2(s), w_3X_3(s), \dots, w_mX_m(s))$

- Logistic regression treats f(x) as a (generalized) linear function
- Allows for multiple qualitative classes
- Ensures that estimates of F(**s**) are [0,1]

Key assumptions of logistic regression

- Dependent variable must be binary
- Observations must be independent (important for spatial analyses)
- Predictors should not be collinear
- Predictors should be linearly related to the log-odds
- Sample Size

Beyond Linearity

- Logistic (and other generalized linear models) are relatively interpretable
- Probability theory allows robust inference of effects
- Predictive power can be low
- Relaxing the linearity assumption can help

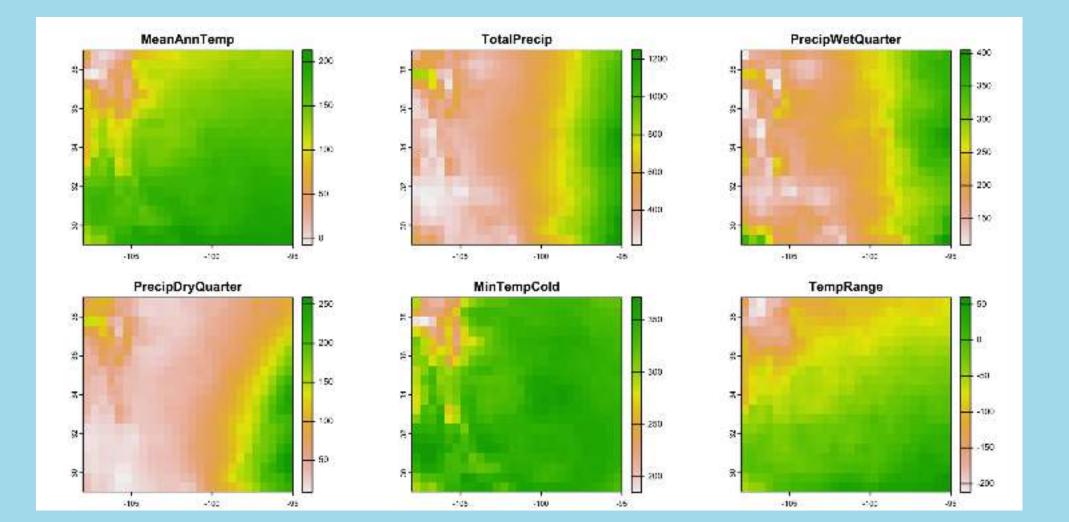
Classification Trees

- Use decision rules to segment the predictor space
- Series of consecutive decision rules form a 'tree'
- Terminal nodes (leaves) are the outcome; internal nodes (branches) the splits

Classification Trees

- Divide the predictor space (R) into J non-overlapping regions
- Every observation in R_j gets the same prediction
- Recursive binary splitting
- Pruning and over-fitting

An Example Inputs from the dismo package

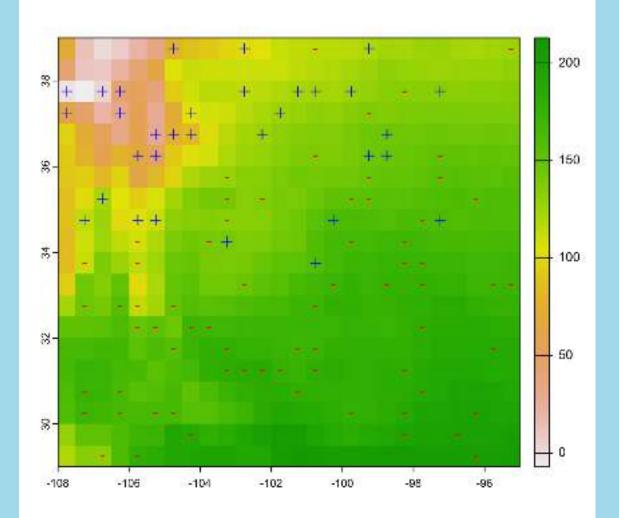


An Example

The sample data

1 head(pres.abs)

```
Simple feature collection
with 6 features and 1 field
Geometry type: POINT
Dimension:
               XY
Bounding box: xmin: -106.75
ymin: 31.25 xmax: -98.75
ymax: 37.75
Geodetic CRS: GCS unknown
                 geometry
  У
    POINT (-99.25 35.25)
1 0
     POINT (-98.75 36.25)
2 1
 1 POINT (-106.75 35.25)
3
  0 POINT (-100.75 31.25)
4
    POINT (-99.75 37.75)
5
 1
6 1 POINT (-104.25 36.75)
```



An Example

Building our dataframe

1	pts.df	<-	<pre>terra::extract(pred.stack,</pre>	<pre>vect(pres.abs), di</pre>	E=TRUE)
---	--------	----	---------------------------------------	-------------------------------	---------

2 head(pts.df)

-5

-81

-107

4

5

6

	ID	MeanAnnTemp	TotalPrecip	PrecipWetQuarter	PrecipDryQuarter	MinTempCold
1	1	155	667	253	71	350
2	2	147	678	266	66	351
3	3	123	261	117	40	329
4	4	181	533	198	69	348
5	5	127	589	257	48	338
6	6	83	438	213	38	278
	Tem	pRange				
1		-45				
2		-58				
3		-64				

An Example

Building our dataframe

1 pts.df[,2:7] <- scale(pts.df[,2:7])</pre>

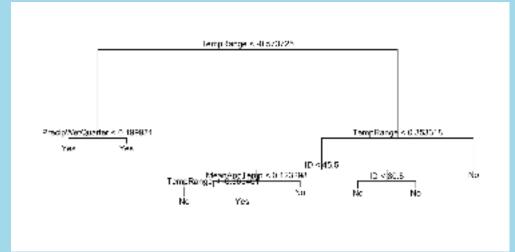
2 summary(pts.df)

ID	MeanAnnTemp	TotalPrecip	PrecipWetQuarter
Min. : 1.00	Min. :-3.3729	Min. :-1.3377	Min. :-1.6926
1st Qu.: 25.75	1st Qu.:-0.4594	1st Qu.:-0.7980	1st Qu.:-0.6895
Median : 50.50	Median : 0.2282	Median :-0.2373	Median :-0.2224
Mean : 50.50	Mean : 0.0000	Mean : 0.0000	Mean : 0.0000
3rd Qu.: 75.25	3rd Qu.: 0.7118	3rd Qu.: 0.7140	3rd Qu.: 0.6508
Max. :100.00	Max. : 1.4285	Max. : 2.4843	Max. : 2.2713
PrecipDryQuarter	MinTempCold	TempRange	
Min. :-1.0828	Min. :-3.9919	Min. :-2.7924	
1st Qu.:-0.7013	1st Qu.:-0.0598	1st Qu.:-0.5216	
Median :-0.3770	Median : 0.3582	Median : 0.2075	
Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	
3rd Qu.: 0.4290	3rd Qu.: 0.5495	3rd Qu.: 0.6450	
Max. : 3.1713	Max. : 1.1092	Max. : 2.0407	

An example

• Fitting the classification tree

- 1 library(tree)
- 2 pts.df <- cbind(pts.df, pres.abs\$y)</pre>
- 3 colnames(pts.df)[8] <- "y"</pre>
- 4 pts.df\$y <- as.factor(ifelse(pts.df\$y == 1, "Yes", "No"))</pre>
- 5 tree.model <- tree(y ~ . , pts.df)</pre>
- 6 plot(tree.model)
- 7 text(tree.model, pretty=0)



An example

• Fitting the classification tree

1 summary(tree.model)

```
Classification tree:

tree(formula = y ~ ., data = pts.df)

Variables actually used in tree construction:

[1] "TempRange" "PrecipWetQuarter" "ID"

Number of terminal nodes: 8

Residual mean deviance: 0.3164 = 29.11 / 92

Misclassification error rate: 0.07 = 7 / 100
```

"MeanAnnTemp"

Benefits and drawbacks

Benefits

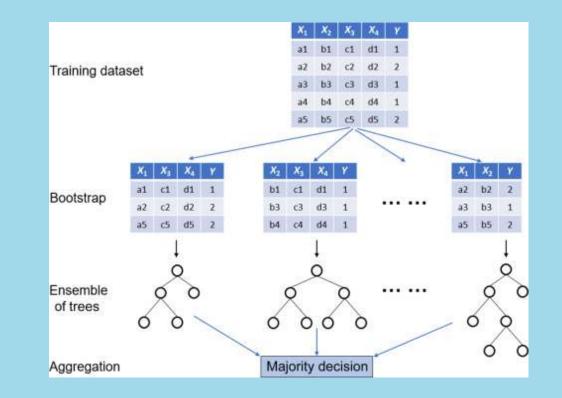
- Easy to explain
- Links to human decisionmaking
- Graphical displays
- Easy handling of qualitative predictors

Costs

- Lower predictive accuracy than other methods
- Not necessarily robust

Random Forests

- Grow 100(000s) of trees using bootstrapping
- Random sample of predictors considered at each split
- Avoids correlation amongst multiple predictions
- Average of trees improves overall outcome (usually)
- Lots of extensions

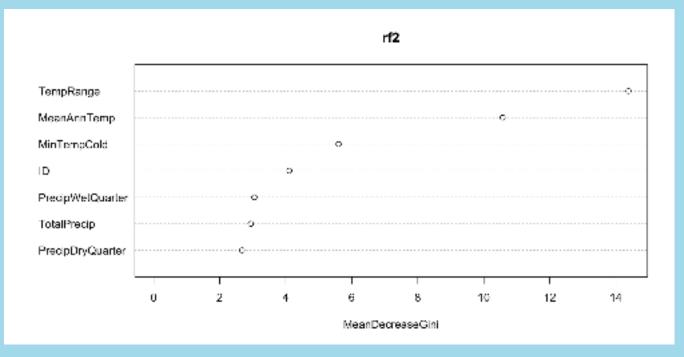


An example

• Fitting the Random Forest

- 1 library(randomForest)
- 2 class.model <- y ~ .
- 3 rf2 <- randomForest(class.model, data=pts.df)</pre>

```
4 varImpPlot(rf2)
```



Modelling Presence-Background Data

The sampling situation

From Lentz et al. 2008

- Opportunistic collection of presences only
- Hypothesized predictors of occurrence are measured (or extracted) at each presence
- Background points (or pseudoabsences) generated for comparison

The Challenge with Background Points

- What constitutes background?
- Not measuring *probability*, but relative likelihood of occurrence
- Sampling bias affects estimation
- The intercept

 $y_i \sim \text{Bern}(p_i)$ $\text{link}(p_i) = \mathbf{x_i}'\beta + \alpha$

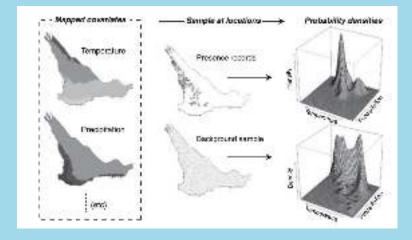
MaxEnt

From Lentz et al. 2008

- Opportunistic collection of presences only
- Hypothesized predictors of occurrence are measured (or extracted) at each presence
- Background points (or pseudoabsences) generated for comparison

Maximum Entropy models

- MaxEnt (after the original software)
- Need *plausible* background points across the remainder of the study area
- Iterative fitting to maximize the distance between predictions generated by a spatially uniform model
- Tuning parameters to account for differences in sampling effort, placement of background points, etc
- Development of the model beyond the scope of this course, but see Elith et al. 2010



From Elith et al. 2010

Challenges with MaxEnt

- Not measuring *probability*, but relative likelihood of occurrence
- Sampling bias affects estimation (but can be mitigated using tuning parameters)
- Theoretical issues with background points and the intercept
- Recent developments relate MaxEnt (with cloglog links) to Inhomogenous Point Process models

Extensions

- Polynomial, splines, piece-wise regression
- Neural nets, Support Vector Machines, many many more