Towards Interactivity

HES 505 Fall 2023: Session 31

Matt Williamson

3 Categories of data visualization

- Static
- Interactive
- Dynamic

dynamic

Why Move Beyond Static Maps?

Dealing with complex datasets

- Identifying structure that might otherwise be hidden
- Diagnosing models and interpreting results
- Aiding the sense-making process

Clarity in presentation

- Zooming allows the user to determine scale of presentation
- Hovering allows more information to be displayed 'ondemand'
- Subsetting facilitates ease of interpretation

Designing for the User

Who is your audience?

- Your advisor and colleagues?
- An external collaborator?
- The general public?
 - User archetypes

Iteration

From Usability.gov

- Feedback is critical
- Ideation: What *specifically* does the user need?
- Meaning: Are the data clearly defined and explained? Are the conclusions obvious?
- Function: Given the usecases, will the application (visualization) actually perform?

Building interactive visualizations in R

A note about APIs

- API: Application Programming Interface
- A software intermediary that allows two applications to "communicate"
- Lots of **R** packages rely on APIs to access data on the web (e.g.,tidycensus)
- Facilitates reproducibility and powerful web applications built on **R** analyses
- May require "keys" and additional parsing (Mapbox and Google)

Interactive maps with mapview and tmap

- Easy extension of your existing
- Class Demo

Clarity in presentation (revisited)

Using plotly

- Syntax is similar to **ggplot**
- hoverinfo describes which elements you'd like to make interactive
- Other plot elements available (see ?plot_ly)

Using plotly

```
1 q <- txhousing %>%
     # group by city
 2
 3
     group by(city) %>%
     # initiate a plotly object with date on x and median on y
 4
 5
     plotly::plot ly(x = -date, y = -median) %>%
     # add a line plot for all texan cities
 6
      plotly::add lines(name = "Texan Cities", hoverinfo = "none",
 7
               type = "scatter", mode = "lines",
 8
 9
               line = list(color = 'rgba(192,192,0.4)')) %>%
     # plot separate lines for Dallas and Houston
10
     plotly::add lines(name = ~city,
11
12
               data = filter(txhousing,
13
                             city %in% c("Dallas", "Houston")),
14
               hoverinfo = ~city,
               line = list(color = c("red", "blue")),
15
               color = ~city)
16
```

Animated maps with tmap and gganimate

::: columns ::: {.column width="40%"}

- 1 urb_anim = tm_shape(world) + tm_polygons() +
- 2 tm_shape(urban_agglomerations) + tm_dots(size = "population_millions") +
- 3 tm_facets(along = "year", free.coords = FALSE)
- 4 tmap_animation(urb_anim, filename = "urb_anim.gif", delay = 25)

::: ::: {.column width="60%"}

