
Towards Interactivity
HES 505 Fall 2023: Session 31

Matt Williamson

1

Objectives

3

3 Categories of data visualization

Static
Interactive
Dynamic

dynamic

4

Why Move Beyond
Static Maps?

6

Dealing with complex datasets

Identifying structure that might otherwise be hidden
Diagnosing models and interpreting results
Aiding the sense-making process

7

Clarity in presentation
Zooming allows the user to determine scale of
presentation
Hovering allows more information to be displayed ‘on-
demand’
Subsetting facilitates ease of interpretation

8

Designing for the User

10

Who is your audience?
Your advisor and colleagues?
An external collaborator?
The general public?

User archetypes

11

Iteration
Feedback is critical
Ideation: What specifically
does the user need?
Meaning: Are the data clearly
defined and explained? Are
the conclusions obvious?
Function: Given the usecases,
will the application
(visualization) actually
perform?From Usability.gov

12

Building interactive
visualizations in R

14

A note about APIs
API: Application Programming Interface
A software intermediary that allows two applications to
“communicate”
Lots of R packages rely on APIs to access data on the
web (e.g.,tidycensus)
Facilitates reproducibility and powerful web
applications built on R analyses
May require “keys” and additional parsing (Mapbox and
Google)

15

Interactive maps with mapview and
tmap

Easy extension of your existing
Class Demo

16

Clarity in presentation (revisited)

2000 2002 2004 2006 2008

50k

100k

150k

200k

250k

300k

date
m
ed
ia
n

17

Using plotly
Syntax is similar to ggplot
hoverinfo describes which elements you’d like to
make interactive
Other plot elements available (see ?plot_ly)

18

Using plotly
g <- txhousing %>% 1
 # group by city2
 group_by(city) %>%3
 # initiate a plotly object with date on x and median on y4
 plotly::plot_ly(x = ~date, y = ~median) %>%5
 # add a line plot for all texan cities6
 plotly::add_lines(name = "Texan Cities", hoverinfo = "none", 7
 type = "scatter", mode = "lines", 8
 line = list(color = 'rgba(192,192,192,0.4)')) %>%9
 # plot separate lines for Dallas and Houston10
 plotly::add_lines(name = ~city, 11
 data = filter(txhousing, 12
 city %in% c("Dallas", "Houston")),13
 hoverinfo = ~city,14
 line = list(color = c("red", "blue")),15
 color = ~city)16

19

Animated maps with
tmap and gganimate
::: columns ::: {.column width=“40%”}

urb_anim = tm_shape(world) + tm_polygons() + 1
 tm_shape(urban_agglomerations) + tm_dots(size = "population_millions") +2
 tm_facets(along = "year", free.coords = FALSE)3
tmap_animation(urb_anim, filename = "urb_anim.gif", delay = 25)4

::: ::: {.column width=“60%”}

20

