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Objectives
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3 Categories of data visualization



Static
Interactive
Dynamic

dynamic
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Why Move Beyond
Static Maps?
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Dealing with complex datasets

Identifying structure that might otherwise be hidden
Diagnosing models and interpreting results
Aiding the sense-making process
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Clarity in presentation
Zooming allows the user to determine scale of
presentation
Hovering allows more information to be displayed ‘on-
demand’
Subsetting facilitates ease of interpretation
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Designing for the User
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Who is your audience?
Your advisor and colleagues?
An external collaborator?
The general public?

User archetypes
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Iteration
Feedback is critical
Ideation: What specifically
does the user need?
Meaning: Are the data clearly
defined and explained? Are
the conclusions obvious?
Function: Given the usecases,
will the application
(visualization) actually
perform?From Usability.gov
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Building interactive
visualizations in R

14



A note about APIs
API: Application Programming Interface
A software intermediary that allows two applications to
“communicate”
Lots of R packages rely on APIs to access data on the
web (e.g.,tidycensus)
Facilitates reproducibility and powerful web
applications built on R analyses
May require “keys” and additional parsing (Mapbox and
Google)
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Interactive maps with mapview and
tmap

Easy extension of your existing
Class Demo
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Clarity in presentation (revisited)

2000 2002 2004 2006 2008

50k

100k

150k

200k

250k

300k

date
m
ed
ia
n

17



Using plotly
Syntax is similar to ggplot
hoverinfo describes which elements you’d like to
make interactive
Other plot elements available (see ?plot_ly)
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Using plotly
g <- txhousing %>% 1
  # group by city2
  group_by(city) %>%3
  # initiate a plotly object with date on x and median on y4
   plotly::plot_ly(x = ~date, y = ~median) %>%5
  # add a line plot for all texan cities6
   plotly::add_lines(name = "Texan Cities", hoverinfo = "none", 7
            type = "scatter", mode = "lines", 8
            line = list(color = 'rgba(192,192,192,0.4)')) %>%9
  # plot separate lines for Dallas and Houston10
   plotly::add_lines(name = ~city, 11
            data = filter(txhousing, 12
                          city %in% c("Dallas", "Houston")),13
            hoverinfo = ~city,14
            line = list(color = c("red", "blue")),15
            color = ~city)16
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Animated maps with
tmap and gganimate
::: columns ::: {.column width=“40%”}

urb_anim = tm_shape(world) + tm_polygons() + 1
  tm_shape(urban_agglomerations) + tm_dots(size = "population_millions") +2
  tm_facets(along = "year", free.coords = FALSE)3
tmap_animation(urb_anim, filename = "urb_anim.gif", delay = 25)4



::: ::: {.column width=“60%”}
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