Statistical Modelling I

Content for Wednesday, November 1, 2023

Now that we’ve spent some time building dataframes and assessing the spatial correlation (or covariation) for different data, we can move beyond just describing the nature of the data we have or interpolating based on simple predictions. We’ll introduce two fairly simple spatial analysis approaches - overlays and logistic regression - and talk about some of the key assumptions and extensions of these approaches.

Resources

Objectives

By the end of today you should be able to:

  • Identify nearest neighbors based on distance

  • Describe and implement overlay analyses

  • Extend overlay analysis to statistical modeling

  • Generate spatial predictions from statistical models

View all slides in new window Download PDF of all slides

Link to Panopto Video

References

Guillera-Arroita, G., J. J. Lahoz-Monfort, J. Elith, A. Gordon, H. Kujala, P. E. Lentini, M. A. McCarthy, R. Tingley, and B. A. Wintle. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24:276–292.
Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, T. J. Regan, L. Brotons, E. McDonald-Madden, C. Mantyka-Pringle, T. G. Martin, J. R. Rhodes, R. Maggini, S. A. Setterfield, J. Elith, M. W. Schwartz, B. A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M. R. Kearney, H. P. Possingham, and Y. M. Buckley. 2013. Predicting species distributions for conservation decisions. Ecol. Lett. 16:1424–1435.
Stoltzfus, J. C. 2011. Logistic regression: A brief primer. Acad. Emerg. Med. 18:1099–1104.